Electrochemiluminescent Detection of hNQO1 and Associated Drug Screening Enabled by Futile Redox Cycle Reaction

18 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Human NAD(P)H: quinone oxidoreductase 1 (hNQO1), a proteinase that engages in detoxification of quinones and capable of activating anti-tumor drugs, has drawn increasing attention as tumor biomarker and drug target. To date, the detection of hNQO1 primarily uses stimulus-responsive probes, involving metabolization of synthetic quinone-functionalized substrates, which however, remain challenging to improve the sensing signal-to-noise ratio, and are lack of sufficient stability. Herein, we report a facile but general way for hNQO1 detection and associated drug screening as well by ECL sensing of the metabolic H2O2 enabled by futile redox cycle reaction. Taking advantage of the intrinsic circulatory amplification and the luminol-modified nickel foam electrode, the sensing system exhibited a record-level performance in electrochemiluminescent detection of hNQO1. The same strategy was also successfully applied to rapidly screening hNQO1-directed anti-tumor candidate drugs. The proposed new principle for hNQO1 detection would stimulate ECL as a promising tool that combines diagnostic and drug screening functions for the popularization of proteinases in cancer management.


Hydrogen peroxide
Cancer diagnosis
Drug screening

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.