Mechanochemical Synthesis of Mixed Metal, Mixed Linker GlassForming Metal–Organic Frameworks

14 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Current methodologies to produce glass forming metal–organic frameworks (MOFs) rely on non-scalable solvothermal syntheses which have high energy requirements, relatively low yields and large tetratogenic solvent usage. Here we use a mechanochemical method to produce glass-forming MOFs, ZIF-62 and ZIF-UC-5, in 30 minutes at room temperature, using microlitre quantities of solvent and stoichiometric amounts of organic linkers. This method facilitates the accurate synthesis of ZIF-62 structures containing both Co and Zn, allowing the effect of metal-ion dopant upon melting temperature to be studied for the first time. Further to this, we present variable organic linker ratio series of IF-62 and of ZIF-UC-5. The specific composition of the materials in the series is made possible by the mechanochemical method. We also present a greener solvothermal method to form ZIF-62, which is capable of producing crystalline materials of suffcient quality for single crystal diffraction experiments.



Supplementary materials

Supplementary Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.