Identification of Durable and Non-Durable FeNx Sites in Fe-N-C Materials for Proton Exchange Membrane Fuel Cells

13 February 2020, Version 1

Abstract

While Fe-N-C materials are a promising alternative to platinum for catalyzing oxygen reduction in acidic polymer fuel cells, limited understanding of their operando degradation restricts rational approaches towards improved durability. Here we show that Fe-N-C catalysts initially comprising two distinct FeNx sites (S1 and S2) degrade via the transformation of S1 into iron oxides while the structure and number of S2 were unmodified. Structure-activity correlations drawn from end-of-test 57Fe Mössbauer spectroscopy reveal that both sites initially contribute to the ORR activity but only S2 significantly contributes after 50 h of operation. From in situ 57Fe Mössbauer spectroscopy in inert gas coupled to calculations of the Mössbauer signature of FeNx moieties in different electronic states, we identify S1 to be a high-spin FeN4C12 moiety and S2 a low- or intermediate spin FeN4C10 moiety. These insights lay the ground for rational approaches towards Fe-N-C cathodes with improved durability in acidic fuel cells.

Keywords

fuel cell
iron
catalyst
spectroscopy

Supplementary materials

Title
Description
Actions
Title
supporting information file
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.