Multichromic Metal-Organic Framework for Multimode Photonic Sensing

10 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Luminescent metal-organic frameworks (MOFs) offer a multifunctional platform for engineering non-invasive sensors and tuneable optoelectronics. However, multichromic materials that are photophysically resilient and show high sensitivity towards different physical and chemical stimuli are scarce. We report a facile host-guest nanoconfinement strategy to construct a hybrid material with multichromic sensing capabilities. We design and fabricate a new Guest@MOF material: comprising a zeolitic MOF (ZIF-71), acting as a nanoporous host for encapsulating rhodamine B (RhB) guest molecules, resulting in the RhB@ZIF‑71 system with mechanochromic, thermochromic, and solvatochromic sensing response. The multichromic properties stem from the nanoconfinement effect that ZIF-71 imposes on RhB monomers, yielding the H-type or J-type aggregates with tuneable photophysical and photochemical properties. For mechanochromism, the external pressure causes an emission red shift in a linear fashion, switching the RhB guests from H-type to J-type aggregates via a shear mechanism. For thermochromism, we demonstrate a linear scaling as a function of temperature due to the spatial restriction experienced by J-type aggregates incarcerated in ZIF-71 pores. Harnessing the solvatochromism of RhB@ZIF‑71, we identified three diverse groups of volatile organic compounds. The multimodal response could pave the way to smart applications like photonic pressure sensors, non-invasive thermometers, and ultrasensitive chemosensors.


Hybrid materials
metal-organic frameworks
guest-host interactions
photonic sensors


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.