Molecular Engineering for Boosting AIE-active Free Radical Photogenerator and Its High-performance in Hypoxia via Photodynamic Therapy

10 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Serious hypoxia in solid tumor as well as vicious aggregation-caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) limit the progress of the fluorescence imaging-guided photodynamic (PDT) although it has obvious advantages in precise spatial-temporal control and noninvasive treatment. The photosensitizers featuring Type I reactive oxygen species (ROS) based on free radical and novel aggregation-induced emission (AIE) characteristic (AIE-PSs) could offer precious opportunity to resolve above problems, but there was rare feasible molecular engineering in previous reports. Herein, we proposed that the strategy of fabricating stronger intermolecular charge transfer (ICT) effect in electron-rich anion-π+ AIE-active luminogens (AIEgens) aimed to help suppressing nonradiative internal conversion (IC) as well as promote radiative and intersystem crossing (ISC) processes for boosting more free radical generation. Systematic and detailed experimental and theoretical calculations proved our ideas when the electron-donating abilities enhanced in collaborative donors, and the AIE-PSs exhibited higher performance in near-infrared red (NIR) fluorescence image-guided cancer PDT in vitro/vivo. This work would become an important reference to the design of AIE-active free radical generators for overcoming ACQ effect and tumor hypoxia in future PDT.


aggregation-induced emission effect
reactive oxygen species generation
free radicals generation

Supplementary materials

SI for manuscript


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.