Meso-Architecture Block Copolymers with High Surface Area Styrene-Bridged Organosilica Particles as Constituent for the Stimuli-Responsive Remediation of Water

07 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The development of drugs for birth-control has changed society, and they are used by billions of woman on an every day basis. As for every mass product, there are problems associated with the waste it causes. One has found that residues of hormones in the urine of woman cannot be removed sufficiently from waste-water and this, in-turn, has already observable and undesired consequences in the biosphere. Apart from the removal of drugs, one is in general seeking new methods for the removal of hydrophobic impurities from waste-water. An ideal system would quantitatively take up the impurity, entrap it followed by preferably simple separation. Finally, one wants to reuse the absorbent, which implies the possibility for regeneration and recycling. Such as complex set of tasks requires a relatively complex materials architecture. Functional organic polymers with high affinity towards the drug, with stable open porosity and high surface area, stimuli-responsive properties and in the form of colloidal dispersions could do the job. Unfortunately, such a system does not exist. We solved this problem by generating mesoporous organosilica nanoparticles, which are monomers at the same time. Initiation of the polymerization reaction by surface-bound pore-walls leads to the formation of a special type of block-copolymer. The pore-walls are covered by the polymer, which cannot leach. An orthogonal modification was achieved by modification of the external surfaces of the particles with a thermoresponsive polymer by click-chemistry. The final core-shell system was able to remove hydrophobic molecules such as the hormone progesterone from water. A change of temperature induces the collapse of the thermoresponsive polymer, which closes the pores and induces aggregation of the particles. After separation of the particles, and thus also the entrapped impurity, from the solvent, one can re-open the pores, which leads to a release of the adsorbed compound(s).


Mesoporous Materials
organosilica nanoparticles functionalized
stimuli-responsive materials
Water Remediation

Supplementary materials

CoreShellPMOSmart ESI 06Feb2020 SP


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.