Visible-Light Activated [2+2] Photocycloaddition Reaction Enabled Identification of Carbon-Carbon Double Bonds Position Isomerism in Structural Lipidomics

07 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The photocycloaddition of olefins with carbonyls is of fundamental interest and practical importance in C=C bond location in unsaturated lipids. However, the traditional UV light activated [2+2] photocycloaddition reaction suffers side reactions and potential health damage. Here, we reported the first example of visible-light activated [2+2] photocycloaddition of anthraquinone with unsaturated lipids. This reaction showed great capability for locating the C=C bonds in various kinds of monounsaturated and polyunsaturated lipids by combining with tandem mass spectrometry (MS), such as fatty acids, phospholipids and glycerides. Based on this developed reaction, a workflow with liquid chromatography tandem MS method was developed for the global identification of unsaturated lipids in human serum, and 86 of monounsaturated and complicated polyunsaturated lipids were identified with definitive positions of C=C bonds. This approach provides new insights both on the photocycloaddition reactions and the structural lipidomics.

Keywords

visible light
[2+2] photocycloaddition reaction
double bond identification
Lipid
mass spectrometry
structural lipidomics
Liquid chromatography-tandem mass spectrometry

Supplementary materials

Title
Description
Actions
Title
Supporting Information VPCA
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.