Electrochemical Reduction of [Ni(Mebpy)3]2+. Elucidation of the Redox Mechanism by Cyclic Voltammetry and Steady-State Voltammetry in Low Ionic Strength Solutions.

03 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Bipyridine complexes of Ni are used as catalysts in a variety of reductive transformations. Here, the electroreduction of [Ni(Mebpy)3]2+ (Mebpy = 4,4’-dimethyl-2,2’-bipyridine) in dimethylformamide is reported, with the aim of determining the redox mechanism and oxidation states of products formed under well-controlled electrochemical conditions. Results from cyclic voltammetry, steady-state voltammetry (SSV) and chronoamperometry demonstrate that [Ni(Mebpy)3]2+ undergoes two sequential 1e reductions at closely separated potentials (E0’1 = -1.06 ± 0.01 V and E02 = -1.15 ± 0.01 V vs Ag/AgCl (3.4 M KCl)). Homogeneous comproportionation to generate [Ni(Mebpy)3]+ is demonstrated in SSV experiments in low ionic strength solutions. The comproportionation rate constant is determined to be > 106 M-1s-1, consistent with rapid outer-sphere electron transfer. Consequentially, on voltammetric time scales, the 2e reduction of [Ni(Mebpy)3]2+ results in formation of [Ni(Mebpy)3]1+ as the predominant species released into bulk solution. We also demonstrate that [Ni(Mebpy)3]0 slowly loses a Mebpy ligand (~10 s-1).

Keywords

Cyclic Voltammetry
Reaction Mechanism
Molecular electrochemistry
Computational chemistry
Nickel
Transition metals
Voltammetry

Supplementary materials

Title
Description
Actions
Title
hsw SI Ni(ll)-bipyridine 01-29-2020 MAE
Description
Actions
Title
hsw comsol report MAE
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.