Insights Into Defect Arrangements in Y-Doped BaZrO3 From Large-Scale First-Principles Thermodynamic Sampling: Association, Repulsion, Percolation, and Trapping

03 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Y-doped BaZrO3 is an ion conductor under intense research for application in medium temperature solid oxide fuel cells. The conductivity is maximized at ~20% doping, and the decrease with further doping has often been attributed to the association effect, or the trapping of ionic charge carriers by the dopant. This seems like a reasonable conjecture since the dopant and carrier are charged in opposite polarities
and should attract each other. However, at such high doping concentrations, many-body interactions between nearby dopants and carriers are likely to modify such a simple two-body attraction picture. Thus, in this work, we employ a large-scale first-principles thermodynamic sampling scheme to directly examine the configuration of dopants and charge-compensating defects at realistic doping concentrations under processing conditions. We find that although there is, indeed, a clear YZr – VO association effect at all doping concentrations examined, the magnitude of the effect actually decreases with increasing dopant concentration. We also find that YZr–YZr and VO –VO interactions cannot simply be understood in terms of two-body Coulomb attraction and repulsion, highlighting the importance of many-body effects in understanding the defect chemistry
in heavily doped oxides. Finally, we examine the dopant configurations and successfully explain the conductivity maximum based on a percolation vs. trapping picture that has gained attention recently.

Keywords

First principles
Replica exchange Monte Carlo method
BaZrO3
proton conductor

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.