Highly Active Deficient Ternary Sulfide Photoanode for Photoelectrochemical Water Splitting

23 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The exploration of photoanode materials with high efficiency and stability is the
eternal pursuit for the realization of practically solar-driven photoelectrochemical
water splitting. Here we develop a novel deficient ternary metal sulfide (CdIn2S4)
as photoanode, and its PEC performance is significantly enhanced by introducing
surface S vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs.
RHE and 1 Sun and an applied bias photon-to-current efficiency of 2.49% at 0.477
V vs. RHE, which, to the best of our knowledge, are the record-high values for a
single sulfide photon absorber to date. The experimental characterizations and
theoretical calculations highlight the enhanced effect of surface S vacancies on the
interfacial charge separation and transfer kinetics, and also demonstrate the
restrained surface states distribution and the transformation of active sites after
introducing surface S vacancies. This work may inspire more excellent work on
developing sulfide-based photoanodes.


photoelectrochemical application
surface vacancy
Metal Sulfide Catalysts

Supplementary materials

supporting information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.