Mechanochemical Synthesis of Short DNA Fragments

17 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the general and rapid synthesis of short DNA fragments of controllable sequence and length using multi-step, one-pot mechanochemical reactions, without bulk solvent or the need to isolate intermediates. We demonstrate, for the first time, the multi-step ball milling synthesis of DNA dimers and trimers via phosphoramidite and H-phosphonate chemistries. The use of mechanochemistry allowed for coupling of phosphoramidite monomers to the 5'-hydroxyl group of nucleosides, iodine/water oxidation of the resulting phosphite triester linkage, and removal of the 5'-dimethoxy (DMTr) protecting group in situ and in good yields (up to 60% over three steps) to produce DNA dimers in one-pot manner. Sulphurization of phosphite triester linkages was possible using elemental sulfur yielding the corresponding phosphorothioate DNA dimers in good yield (up to 80% over two steps). By using H-phosphonate chemistry under milling conditions, it was possible to couple, protect the H-phosphonate linkage, and remove the 5'-DMTr protecting group in situ, enabling an one-pot process with good yields comparable to existing solvent-based procedures (up to 65% over three steps, or ca. 87% per step). This work opens the door to creation of solvent-free methodologies for the assembly of complex DNA and RNA therapeutics.

Keywords

Oligonucleotides
DNA
Mechanochemistry
Green Chemistry
Solvent-free Chemistry

Supplementary materials

Title
Description
Actions
Title
SI ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.