Enantiodivergent Formation of C–P Bonds: Synthesis of P-Chiral Phosphines and Methyl-phosphonate Oligonucleotides

21 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A simple limonene-derived P(V)-based reagent for the modular, scalable, and stereospecific synthesis of chiral phosphines and methyl-phosphonate oligonucleotide (MPO) building blocks is presented. Built on a translimonene oxide (TLO) core, this formally triply electrophilic reagent class displays starkly differing reactivity from the cis-limonene oxide derived reagents reported previously [dubbed phosphorus-sulfur incorporation reagents or Ψ (PSI) for short]. These new phosphorus-incorporation reagents (PI, abbreviated as Π) access distinctly different chemical space than Ψ. The P(V)-manifold disclosed herein permits the stereochemically controlled sequential addition of carbon-based nucleophiles (from one to three) to produce a variety of enantiopure C–P bearing building blocks. When three carbon nucleophiles are added, useful P-chiral phosphines can be accessed after stereospecific reduction. When a single methyl group is added, the remaining nucleophiles can be nucleosides thus opening the door to the first stereospecific access to MPO-based oligonucleotide building blocks. Although both enantiomers of Π are available, only one isomer is required as the order of nucleophile addition controls the absolute stereochemistry of the final product through a unique enantiodivergent design.


Chiral Phosphine Ligands
Methyl-Phosphonate Oligonucleotides

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.