Continuous Flow Synthesis of ZIF-8 Biocomposites with Tuneable Particle Size

21 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Zeolitic Imidazolate Framework (ZIF) biocomposites show the capacity to protect and deliver bio-therapeutics. To date, the progress in this research area is based on laboratory batch methods. To further explore the potential of ZIF-biocomposites for application to biomedicine and biotechnology, the continuous production of ZIF-biocomposites of specific particle size is desirable. We report the first continuous flow synthetic method for the encapsulation of a model protein (BSA) and a clinical therapeutic (α1-antitrypsin, AAT) in ZIF-8. We studied the in situ kinetics of nucleation, growth and crystallization of BSA-ZIF-8 by SAXS. By controlling the injection time of ethanol, we could quench the particle growth via ethanol-induced crystallization. The particle size of the biocomposite was tuned in the 40-100 nm range by varying residence time prior to introduction of ethanol.

Keywords

ZIF-8
biocomposite material
Continuous Flow Chemistry
SAXS spectroscopy
Particle Size Control

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.