Enzymatic Synthesis of Polyesters: A QM/MM Study

07 January 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Plastic pollution is causing an immeasurable damage to marine and land eco-systems. Better alternatives are actively being sought-after, such as biodegradable polyesters obtained by enzymatic synthesis. However, wild type enzymes still pose fundamental efficiency limitations that can be circumvented by protein reengineering approaches.Here we compare in detail the catalytic mechanisms for polycaprolactone synthesis by the enzymes Archaeoglobus fulgidus carboxylesterase (AfEST) and Candida antarctica lipase B (CalB) by performing Quantum mechanics calculations and Quantum Mechanics/Molecular Mechanics Molecular Dynamics simulations. We found that bond forming/breaking events are concerted with proton transfer to or from the catalytic histidine in all the transition states, but with different degrees of coupling between the motions of the atoms involved. Our results give important insights towards the design of new enzyme variants combining good activity with high thermostability.


Biodegradable polyesters
enzymatic synthesis
QM/MM MD simulations
AfEST carboxylesterase
CalB lipase

Supplementary materials

SI chem


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.