Robust Aluminium and Iron Phosphinate Metal-Organic Frameworks for Efficient Removal of Bisphenol A

13 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein, we introduce a new series of highly stable MOFs, constructed using Fe3+ and Al3+ metal ions and bisphosphinate linkers. The isoreticular design leads to ICR-2, ICR-4, ICR-6, and ICR-7 MOFs with a honeycomb arrangement of linear pores, surface areas up to 1360 m2 g-1, and high solvothermal stability. In most cases, their sorption capacity is retained even after 24 h reflux in water. The choice of the linkers allows fine tuning of the pore sizes and the chemical nature of the pores. This feature can be utilized for optimization of host-guest interactions between molecules and pore walls. Water pollution by various endocrine disrupting chemicals has been considered as a global threat to public health. In this work, we proved that the chemical stability and the hydrophobic nature of the synthesized series of MOFs result in remarkable sorption properties of these materials for neurodisruptor bisphenol A.

Keywords

metal-organic frameworks (MOFs)
phosphinic acid
adsorption
bisphenol a

Supplementary materials

Title
Description
Actions
Title
ESI Robust Aluminium and Iron Phosphinate Metal Organic Frameworks for Efficient Removal of Bisphenol A
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.