On the Adsorption of Aspartate Derivatives to Calcite Surfaces in Aqueous Environment

09 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth.

Keywords

Biomineral Interface
Langmuir Adsorption
Molecular Dynamics
Free Energy

Supplementary materials

Title
Description
Actions
Title
ASP-230919-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.