Catalysis-Enabled Access to Cryptic Geldanamycin Oxides

09 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Catalytic, selective modifications of natural products can be a fertile platform for unveiling not only new natural product analogs with altered biological activity, but also for revealing new reactivity and selectivity hierarchies for embedded functional groups in complex environments. Motivated by these intersecting aims, we report site and stereoselective oxidation reactions of geldanamycin facilitated by aspartyl-peptide catalysts. Through the isolation and characterization of four new geldanamycin oxides, we discovered a synergistic effect between lead peptide-based catalysts and geldanamycin, resulting in an unexpected reaction pathway. Curiously, it seems unlikely that our discoveries would not have been possible absent the outer sphere interactions intrinsic to both the catalyst and the natural product. The result is a set of new “meta” catalytic reactions that deliver both unknown and previously incompletely characterized geldanamycin analogs. Enabled by the catalytic, site-selective epoxidation of geldanamycin, biological assays were carried out to document the bioactivities of the new compounds.


Catalysis Cycles
Late stage functionalization

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.