RASS-Enabled S/P–C and S–N Bond Formation for DEL Synthesis

06 January 2020, Version 1

Abstract

DNA Encoded Libraries have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently Reversible Adsorption to Solid Support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C–S, C–P and N–S linkages into DELs, which are underrepresented in the canonical methods.

Keywords

DNA Encoded Libraries
Reversible Adsorption to Solid Support
Nickel Cross-Coupling
Sulfonamide
Sulfone

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions
Title
SI (01 03 2020) rXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.