Localization of Spiropyran Activation

23 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produces more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy.


interfacial testing
shear activation

Supplementary materials

SI ACS applmatinter


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.