Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Synthesis of β-Lactams

27 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Cyclopropanone derivatives have long been considered unsustainable synthetic intermediates due to their extreme strain and kinetic instability. Herein, we report the enantioselective synthesis of 1-sulfonylcyclopropanols as stable yet powerful equivalents of the corresponding cyclopropanone derivatives, via α-hydroxylation of sulfonylcyclopropanes using a bis(silyl) peroxide as electrophilic oxygen source. Both the electronic and steric nature of the sulfonyl moiety, which serves as a base-labile protecting group and confers crystallinity to these cyclopropanone precursors, were found to have a crucial impact on the rate of equilibration to the corresponding cyclopropanone, highlighting the modular nature of these precursors and the potential for their widespread adoption as synthetic intermediates. The utility of these cyclopropanone surrogates is demonstrated in a mild and stereospecific formal [3+1] cycloaddition with simple hydroxylamines acting here as nitrene equivalents, leading to the efficient formation of chiral β-lactam derivatives.


β-Lactam antibiotics
silyl peroxides


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.