γ-Ray-Induced Proton Generation in Polymers: Quantifiable Single-Component Fluorescent Ratiometric Chemosensor

24 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Detection of g-rays is of vital significance in various areas such as high-energy physics, nuclear medicine, national security and space exploration. However, most current spectrometry methods are typically based on ionization effects which are limited to electron counting techniques. Herein, we report an alternative, quantifiable g-ray chemosensor from a g-ray-induced proton generation process more sensitive to poly (methyl methacrylate) (PMMA) and polyvinyl chloride (PVC) by surveying a series of commercially available polymers. Accordingly, a pH-sensitive yet g-ray-stable fluorophore is designed, resulting in dramatic fluorescence shift from the blue (lem = 460~480 nm) to the red region (lem = 570~620 nm) after subjecting it to g-irradiation in PMMA or PVC films. A linear response of ratiometric fluorescence intensity (Ired/Iblue) to g-ray dosage in a wide range (80-4060 Gy) was established, which can be used as a visual dosimeter. Meanwhile, the discovery also opens new doors for proton-based radiation detection and chemistry.

Keywords

γ-ray detection
proton generation
pH sensor
ratiometric fluorescence sensing
radiation chemistry of polymer

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.