Enzymatic Formation of an Artificial Base Pair Using a Modified Adenine Nucleoside Triphosphate

23 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However,the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches and very little is known on polymerase-mediated synthesis. Herein, we report on the selective and high yielding enzymatic construction of a silver-mediated base pair as well as a two-step protocol for the synthesis of DNA duplexes containing a metal UBP. Guided by DFT calculations, we also shed light into the mechanism of formation of this UBP as well as into the structural and energetic preferences. Even though this silver UBP is not directly amenable to in vitro selection experiments, the enzymatic synthesis of this UBP provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.


Artificial metal base pairs
Expansion of genetic alphabet
DNA polymerases
Modified nucleoside triphosphate

Supplementary materials

Supporting information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.