Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide

17 December 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Doped carbon-based systems have been extensively studied over the past decade as active electrocatalysts for both the two-electron (2e-) and four-electron (4e-) oxygen reduction reaction (ORR). However, the mechanisms for ORR are generally poorly understood. Here we report an extensive experimental and first-principles theoretical study of the ORR at nitrogen-doped reduced graphene oxides (NrGO). We synthesize three distinct NrGO catalysts and investigate their chemical and structural properties in detail via X-ray photoelectron spectroscopy, infrared and Raman spectroscopy, high-resolution transmission electron microscopy and thin-film electrical conductivity. ORR experiments include the pH dependences of 2e- versus 4e- ORR selectivity, ORR onset potentials, Tafel slopes and H/D kinetic isotope effects. These experiments show very different ORR behavior for the three catalysts, both in terms of selectivity and the underlying mechanism which proceeds either via coupled proton-electron transfers (CPETs) or non-CPETs. Reasonable structural models developed from DFT rationalize this behavior. The key determinant between CPET vs. non-CPET mechanisms is the electron density at the Fermi level under operating ORR conditions. Regardless of the reaction mechanism or electrolyte pH, however, we identify the ORR active sites as sp2 carbons that are located next to oxide regions. This assignment highlights the importance of oxygen functional groups, while details of (modest) N-doping may still affect the overall catalytic activity, and likely also the selectivity, by modifying the general chemical environment around the active site.


oxygen reduction reaction
kinetic isotope
graphene oxide
nitrogen doping

Supplementary materials

NrGO SI ACS Catal updated


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.