Materials Science

Hierarchical Porous Carbon Arising from MOF Encapsulated Bacteria and its Energy Storage Potential


Hierarchical porous carbons (HPCs) hold great promise in energy-related applications owing to their excellent chemical stability and well-developed porous structures. Attention has been drawn toward developing new synthetic strategies and precursor materials that permit greater control over composition, size, morphology, and pore structure. There is a growing trend of employing metal-organic frameworks (MOFs) as HPC precursors as their highly customizable characteristics favor new HPC syntheses. In this article, we report a biomimetically grown bacteria-templated MOF synthesis where the bacteria not only facilitate the formation of MOF nanocrystals, but also provides morphology and porosity control. The resultant HPCs show improved electrochemical capacity behavior compared to pristine MOF derived HPCs. Considering the broad availability of bacteria and ease of its production, in addition to significantly improved MOF growth efficiency on bacterial templates, we believe that bacteria-templated MOF is a promising strategy to produce a new generation of HPCs.

Version notes

The version that begins with 3 (referee feedback)


Thumbnail image of preview.pdf

Supplementary material

Thumbnail image of Screen Shot 2019-08-25 at 9.31.25 AM.png
Screen Shot 2019-08-25 at 9.31.25 AM
Thumbnail image of SI GM.docx