High-Throughput Oil-Encapsulated Nanodroplet Crystallisation for Organic-Soluble Small Molecule Structure Elucidation and Polymorph Screening (ENaCt)

20 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Single crystal X-ray diffraction analysis (SCXRD) constitutes a universal approach for the elucidation of molecular structure and for the study of crystalline forms. However, the discovery of viable crystallisation conditions remains both experimentally challenging and resource intensive, in time and quantity of analyte(s). We report a robot-assisted, high-throughput method for the crystallisation of organic-soluble small molecules, employing only micrograms of analyte per experiment. This allows hundreds of crystallisation conditions to be screened in parallel, with minimal overall sample requirements. Crystals suitable for SCXRD analysis are grown from nanolitre droplets of a solution of analyte in organic solvent(s), each of which is encapsulated within an inert oil to control the rate of solvent loss. This encapsulated nanodroplet crystallisation methodology can also be used in the search for new crystal forms, as exemplified through both our discovery of a new (thirteenth) polymorph of the olanzapine precursor ROY and the SCXRD analysis of the “uncrystallisable” agrochemical dithianon.

Keywords

Polymorphism
Small Molecule Crystallization
uncrystallisable
Crystallisation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.