Accurate Multi-Objective Design in a Space of Millions of Transition Metal Complexes with Neural-Network-Driven Efficient Global Optimization

20 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The accelerated discovery of materials for real world applications requires the achievement of multiple design objectives. Satisfaction of such constraints requires exploration of multi-million compound libraries over which even density-functional theory (DFT) screening is intractable. Machine learning (ML, e.g., artificial neural network, ANN, or Gaussian process, GP) models for this task are limited by training data availability and predictive uncertainty quantification (UQ). We overcome such limitations by using efficient global optimization (EGO) with the multi-dimensional expected improvement (EI) criterion. EGO balances exploitation of a trained model with acquisition of new DFT data at the Pareto front, the region of chemical space that contains the optimal trade-off between multiple design criteria. We demonstrate this approach for the simultaneous optimization of redox potential and solubility in candidate M(II)/M(III) redox couples for redox flow batteries from a space of 2.8M transition metal complexes designed for stability in practical RFB applications. We employ latent-distance-based UQ with a multi-task ANN to enable model generalization that surpasses that of a GP. With this approach, ANN prediction and EI scoring of the full 2.8M complex space is achieved in minutes. Starting from ca. 100 representative points, EGO improves both properties by 3-4 standard deviations in only five generations. Analysis of lookahead errors confirms rapid ANN model improvement during the EGO process, achieving suitable accuracy for predictive design in the space of transition metal complexes. The ANN-driven EI approach achieves at least 500-fold acceleration over random search, identifying a Pareto-optimal design in around five weeks instead of fifty years.

Keywords

machine learning
neural networks
redox flow batteries
transtion metal chemistry
efficient global optimization
probabilistic optimization
materials discovery

Supplementary materials

Title
Description
Actions
Title
SupplementaryMaterial v2
Description
Actions
Title
SupplementaryData
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.