DNP-enhanced NMR of Lithium Dendrites: Selective Observation of the Solid–Electrolyte Interphase

29 November 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Li metal anodes represent the ultimate energy density, but to address safety issues caused by dendrite formation, it is critical to understand the solid–electrolyte interphase (SEI) layer which forms on the metal surface. Dynamic nuclear polarisation (DNP) boosts sensitivity in NMR by harnessing the greater polarisation of unpaired electrons, however typical exogenous organic radicals are non-selective, could react with the SEI, and require cooling the sample to cryogenic temperatures. We instead exploit the inherent conduction electrons to hyperpolarise lithium metal at room temperature, utilising the Overhauser mechanism by which DNP was first discovered. This permits selective enhancement of the organic and inorganic SEI components, revealing their chemical nature and spatial distribution, via the 7Li, 1H and 19F NMR spectra.


battery chemistry
Solid state NMR
Lithium Metal Anode
Solid-electrolyte interphase


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.