SN2-Type Glycosylation with Unprotected Pyranoses

03 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An SN2 mechanism was proposed for highly stereoselective glycosylation of benzoic acid with unprotected α-D-glucose under Mitsunobu conditions in dioxane, while an SN1 mechanism seems to be responsible for non-stereoselective glycosylation in DMF. The SN2-type glycosylation can be applicable to various unprotected pyranoses as glycosyl donors and a wide range of carboxylic acids, phenols, and imides as glycosyl acceptors, retaining its high stereoselectivity (34 examples). Glycosylation of a carboxylic acid with unprotected α-D-mannose proceeded also in an SN2 manner to directly afford a usually less accessible 1,2-cis-mannoside. An extremely short-step total synthesis of a middle molecule (1874 Da) natural glycoside with antitumor activity, coriariin A, was achieved via a double SN2 glycosylation strategy with two molecules of unprotected α-D-glucose.

Keywords

glycosylation
Mitsunobu reaction
SN2 Displacement
Natural products

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.