Enhanced Li+ Conduction Within Single-Ion Conducting Crosslinked Gel via Reduced Cation-Polymer Interaction

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of advanced electrolytes compatible with lithium metal and lithium-ion batteries is crucial for meeting ever growing energy storage demands. One such class of materials, single-ion conducting polymer electrolytes (SIPEs), prevents the formation of ion concentration gradients and buildup of anions at the electrode surface, improving performance. One of the ongoing challenges for SIPEs is the development of materials that are conductive enough to compete with liquid electrolytes. Presented herein is a class of gel SIPEs based on crosslinked poly(tetrahydrofuran) diacrylate that present enhanced room temperature conductivities of 3.5 × 10-5 S/cm when gelled with lithium metal relevant 1,3-dioxolane/dimethoxyethane, 2.5 × 10-4 S/cm with carbonate solutions, and approaching 10-3 S/cm with dimethyl sulfoxide. Remarkably, these materials also demonstrate high conductivity at low temperatures, 1.8 × 10-5 S/cm at -20 °C in certain solvents. Most importantly however, when contrasted with identical SIPEs formulated with poly(ethylene glycol) diacrylate, the mechanisms responsible for the enhanced conductivity are elucidated: decreasing Li+-polymer interactions and gel solvent-polymer interactions leads to an increase in Li+ mobility, improving the ionic conductivity. These findings are generalizable to various SIPE chemistries, and can therefore be seen as an additional set of design parameters for developing future high conductivity SIPEs.

Keywords

polymer electrolyte

Supplementary materials

Title
Description
Actions
Title
TOC Enhanced Li+ conduction in single-ion conducting gel polymer electrolytes
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.