Insight on the Factors Controlling the Equilibrium of Allylic Azides

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Several allylic azides with different double bond substitution were studied to understand the factors governing their equilibrium using density functional theory along with quantum theory of atoms in molecules, Non-covalent Interactions and Natural Bond Orbitals approaches. The results showed the hydroxyl group or heteroatoms in allylic azides interact with the molecule through an electrostatic weak interaction in each pair of regioisomers. The equilibrium shifts of substituted allylic azides, compared to non-substituted allylic azides, are not attributed to the presence of specific interactions, such as hydrogen bond. The observed equilibrium shifts stem mainly from the strengthening and weakening of negative hyperconjugative interactions, which is affected by the weak interaction involving the proximal substituent in each regioisomer. A good linear correlation was obtained between the hyperconjugative energies of pC=C→s*Zb interactions and the calculated percentages of secondary azide and tertiary azides in the equilibrium mixture. Also, the effect of aromatic ring substituent was analysed using such approaches. This study not only provides insight into the factor controlling the stabilities of the substituted allylic azides, but also settle the basis to predict the regioisomer predominance in the equilibrium mixture.

Keywords

Winstein rearrangement
[3,3]-sigmatropic rearrangement
QTAIM topological analysis
non-covalent interaction (NCI) index
NBO approach

Supplementary materials

Title
Description
Actions
Title
SI Insight on the factors controlling the equilibrium of allylic azides
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.