Benchmarking Electronic Structure Methods for Accurate Fixed-Charge Electrostatic Models

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The accuracy of classical molecular mechanics (MM) force fields used for condensed phase molecular simulations depends strongly on the accuracy of modeling nonbonded interactions between atoms, such as electrostatic interactions. Some popular fixed-charge MM force fields use partial atomic charges derived from gas phase electronic structure calculations using the Hartree-Fock method with the relatively small 6-31G* basis set (HF/6-31G*). It is generally believed that HF/6-31G* generates fortuitously overpolarized electron distributions, as would be expected in the higher dielectric environment of the condensed phase. Using a benchmark set of 47 molecules, we show that HF/6-31G* does not uniformly overpolarize molecules and in some cases even leads to molecular dipole moments that are lower than experimental gas phase measurements. We further demonstrate that using computationally inexpensive density functional theory (DFT) methods, together with appropriate augmented basis sets and a continuum solvent model, can yield molecular dipole moments that are both more strongly and more uniformly overpolarized. These data suggest that these methods – or ones similar to them – should be adopted for the derivation of accurate partial atomic charges for next-generation MM force fields.

Keywords

charge models
electronic structure methods
benchmark
force fields

Supplementary materials

Title
Description
Actions
Title
SI for BenchmarkingESMethods
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.