Resolution of the Equilibrium Constant for the T State → RState Conformational Change of Human Hemoglobin into Endothermic and Exothermic Component Reactions

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The dimensionless equilibrium constant for the allosteric conformation change, KΔC = 0.02602 (Knowles & Magde, linked ms 2) following binding of O2 by α-chains in Tstate Hb4/BPG (whole blood under standard conditions) is shown to be comprised of: (i) an endothermic change in conformation, from Tstate to Rstate, of 24.3 kJ/mol; (ii) exothermic conversion of Tstate TαO2-chains to Rstate RαO2-chains of -13.8 kJ/mol; (iii)exothermic binding of BPG by R-states. Eq. (1) defines the component steps whereby the Tstate conformation is converted to the Rstate conformation.

ΔGo(R(Hb4), BPG) describes the endothermic decomposition of the binary complex, THb4/BPG into RHb4 and BPG, equal to + 33.7 kJ/mol (DeBruin et al. (1973). J. Biol. Chem. 248, 2774-2777). ΔGo for the equilibrium constant for ΔGO(KΔC) and Σ ΔGo for binding of O2 by the pair of equivalent Tstate α-chains, ΔGO(Tα*O2), + 9.41 kJ/mol and – 49.6 kJ/mol, respectively, are determined by fitting of O2 equilibrium binding data to the Perutz-Adair equation. ΔGo for reaction of a pair of equivalent Rstate α-chains with O2, ΔGO(RαO2), was estimated from the known affinity of myoglobin for O2 at 37oC (Theorell H. (1936). Biochem. Z., 268, 73-81), -63.4 kJ/mol. The unknown quantity, ∆GO(R(HbO2)4/BPG), was obtained by solving Eq. (1), being -10.5 kJ/mol, K (R(HbO2)4/BPG) = 58.4 L/mol. The value of the equilibrium constant for binding BPG to R-state conformations represents 0.0073% of the value of the binding constant of BPG to Tstate conformations: 800,000 L/mol. The value of KΔC; (i) accounts for the ability of O2 to escape, virtually unhindered from rbcs and (ii) provides a biophysical basis for manifestation of high resting rates of metabolism in warm blooded species.

Keywords

hemoglobin
allosteric structure
Effecter molecule
Standard free energy change
Conformation change

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.