Design of AIEgens for Near-Infrared IIb Imaging Through Structural Modulation at Molecular and Morphological Levels

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Fluorescence imaging in near-infrared IIb (NIR-IIb, 1500-1700 nm) spectrum holds a considerable promise for tissue imaging with deep penetration and high spatial resolution owing to the minimized autofluorescence and suppressed photon scattering. While few inorganic NIR-IIb fluorescent probes have been reported, their organic counterparts are still underdeveloped, possibly due to the lack of efficient materials with long emission wavelength. Herein, we propose a new molecular design philosophy to develop organic NIR-IIb fluorophores with high quantum yield (QY) by manipulation of the effects of twisted intramolecular charge transfer and aggregation-induced emission at the molecular and morphological levels. A pure organic fluorescent dye emitting up to 1600 nm with a QY of 14.2% in the NIR-II region (1000-1600 nm) is developed. For the first time, NIR-IIb fluorescence imaging of blood vessels and deeply-located intestinal tract of live mice based on organic dyes is achieved. The results show that organic fluorophore performs superb imaging ability in both superficial blood vessels and internal organs with high resolution and enhanced signal-to-background ratio in NIR-IIb region. We hope this groundbreakingly study will inspire further research on the evolution of pure organic NIR-IIb probes for in vivo imaging.


organic NIR-IIb emitter
fluorescence imaging
aggregation-induced emission

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.