Abstract
Among the responsive multistable materials, spin crossover (SCO) systems are of particular interest for stabilizing multiple spin states with various stimulus inputs and physical outputs. Here in a 2D Hofmann-type coordination polymer [Fe(isoq)2{Au(CN)2}2] (isoq = isoquinoline), hidden multistability of the spin state is accessed by introducing an medium-temperature annealing after a light/temperature stimulation. With the combined effort of magnetic, crystallographic and Mössbauer spectral investigation, these distinct spin states are identified and the light- and temperature-assisted transition pathways are clarified. Such excitation-relaxation and trapping-relaxation joint mechanisms, as ingenious interplays between the kinetic and thermodynamic effects, uncover hidden possibilities for the discovery of multistable materials and the development of multistate intelligent devices.
Supplementary materials
Title
TOC
Description
Actions
Title
SI
Description
Actions