Machine Learning Reactivity in the Chemical Space Surrounding Vaska's Complex

27 November 2019, Version 1

Abstract

Machine learning models, including neural networks, Bayesian optimization, gradient boosting and Gaussian processes, were trained with DFT data for the accurate, affordable and explainable prediction of hydrogen activation barriers in the chemical space surrounding Vaska's complex.

Content

Supplementary materials

Learning Barriers SI ChRx
Vaskas Space Data

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.