Effective Lignin-First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate Organosolv Process

25 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Large-scale biorefineries converting lignocellulosic biomass into chemicals, fuels, and energy require a cost-effective pretreatment process that can effectively fractionate all main lignocellulose constituents. A mild organosolv process has been developed using a system of dimethyl carbonate (DMC) and ethylene glycol (EG) as solvent. Softwood biomass (pine, spruce, cedar, and Douglas fir) was fractionated using mild conditions: 140 °C, 40 min, DMC-EG, and sulfuric acid. Organosolv pulping of the softwood biomass usually leads to poor delignification hampering enzymatic cellulose hydrolysis. However, for the developed system, effective pretreatment and subsequent enzymatic cellulose hydrolysis into glucose (up to 84.7%) was observed in combination with a high yield of monomeric hemicellulose sugars and monophenolic compounds from lignin (up to 98% compared to theoretical monomer yield). In sum, effective fractionation and in situ lignin depolymerization was demonstrated for various softwood feedstock combined with limited solvent loss at mild conditions and low reactor pressure.

Keywords

lignin
biorefinery
biomass
depolymerization

Supplementary materials

Title
Description
Actions
Title
SI Article
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.