A Bayesian Framework for Adsorption Energy Prediction on Bimetallic Alloy Catalysts

25 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

For high-throughput screening of materials for heterogeneous catalysis, scaling relations provides an efficient scheme to estimate the chemisorption energies of hydrogenated species. However, conditioning on a single descriptor ignores the model uncertainty and leads to sub optimal prediction of the chemisorption energy. In this paper, we extend the single descriptor linear scaling relation to a multi descriptor linear regression models to leverage the correlation between adsorption energy of any two pair of adsorbates. With a large dataset, we use Bayesian Information Criteria (BIC) as the model evidence to select the best linear regression model that are derived from non-informative priors. Furthermore, Gaussian Process Regression (GPR) based on the meaningful convolution of physical properties of the metal-adsorbate complex can be used to predict the baseline residual of the selected model. This integrated Bayesian model selection and Gaussian process regression, dubbed as residual learning, can achieve performance comparable to standard DFT error (0.1 eV) for most adsorbate system. For sparse and small datasets, we propose an ad hoc Bayesian Model Averaging (BMA) approach to make a robust prediction. With this Bayesian framework, we significantly reduce the model uncertainty and improve the prediction accuracy. The possibilities of the framework for high-throughput catalytic materials exploration in a realistic setting is illustrated using large and small sets of both dense and sparse simulated dataset generated from a public database of bimetallic alloys available in Catalysis-Hub.org.

Keywords

machine Learning Methods Enable Predictive Modeling
Bayesian model selection
Bayesian Model Averaging
Gaussian processes
bimetallic alloys

Supplementary materials

Title
Description
Actions
Title
BF SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.