Drug Derived Fluorescent Probes for the Specific Visualization of Cannabinoid Type 2 Receptor - A Toolbox Approach

22 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Cannabinoid type 2 receptor (CB2R) is a fundamental part of the endocannabinoid signaling system (eCB system), and is known to play an important role in tissue injury, inflammation, cancer and pain. In stark contrast to its significance, the underlying signaling mechanisms and tissue expression profiles are poorly understood. Due to its low expression in healthy tissue and lack of reliable chemical tools, CB2R visualization in live cells remains uncharted. Here we report the development of a drug derived toolbox of highly potent, CB2R-selective fluorescent probes based on reverse design. Extensive validation in several applications such as CB2R detection in flow cytometry and time-resolved imaging, and the development of a novel fluorescent-based TR-FRET assay to generate kinetic and equilibrium binding data demonstrate the high versatility of our toolbox. These probes are the first to preserve affinity and efficacy in both human and mouse CB2R, a crucial aspect for preclinical translatability, and to enable imaging of CB2R internalization in living cells using confocal microscopy.


Fluorescent Probe
Cannabinoid Type 2 Receptor
Reverse design
Live cell imaging


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.