Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries

20 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Symmetric aqueous organic redox flow batteries (RFBs) are potentially a cheap, durable and safe energy storage technology. Unlike normal asymmetric flow batteries, they are based on electrolytes that exist in at least three oxidation states and can undergo a minimum of two distinct redox processes. We compute the redox potentials of selected electrolytes intending to understand how the interaction between the redox units affects the potentials. We find that electronic interaction between redox units and intramolecular hydrogen bonding can both be exploited to tune the difference between the redox potentials, i.e. the theoretical voltage of the battery. The redox potentials can be further fine-tuned in either direction by adding substituents. Starting from these observations we formulate a set of rules which will help finding ideal candidates for symmetric RFBs.

Keywords

redox flow battery
organic battery
redox potential
energy storage

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions
Title
SI - Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.