Dearomative Photocatalytic Construction of Bridged 1,3-Diazepanes


The construction of diverse sp3-rich skeletal ring systems is of importance to drug discovery programmes and natural product synthesis. Herein, we report the photocatalytic construction of 2,7-diazabicyclo[3.2.1]octanes (bridged 1,3-diazepanes) via a reductive diversion of the Minisci reaction. The fused tricyclic product is proposed to form via radical addition to the C4 position of 4-substituted quinoline substrates, with subsequent Hantzsch ester-promoted reduction to a dihydropyridine intermediate which undergoes in situ two-electron ring closure to form the bridged diazepane architecture. A wide scope of N-arylimine and quinoline derivatives was demonstrated and good efficiency was observed in the construction of sterically congested all-carbon quaternary centers. Computational and experimental mechanistic studies provide insights into the reaction mechanism and observed regioselectivity/diastereoselectivity.


Thumbnail image of Dearomatization Chem Rxiv.pdf

Supplementary material

Thumbnail image of Graphical Abstract.jpg
Graphical Abstract
Thumbnail image of Dearomative Supporting information Chem Rxiv.pdf
Dearomative Supporting information Chem Rxiv
Thumbnail image of crystallographic data.txt
crystallographic data
Thumbnail image of