Abstract
The electron momentum density (EMD) profiles, for some simple molecules studied in this work, show interesting topographical changes in the presence of a field. An extra angular momentum which is an artefact of the applied field manifests itself as a redistribution of the electron density and brings about a rotation. The inversion symmetry is preserved throughout. EMDs are experimentally accessible quantities. They yield a description of the molecule which is non-nucleo-centric, an attribute which imparts a greater understanding to what goes on in the valence regions. EMDs are more sensitive to an external perturbation than its position space-counterparts, and are suitable for studying the effects of an external perturbation on the valence regions.
Supplementary materials
Title
Paul Rotatory Response of Molecular Electron Momentum Densities in Linear Homogeneous Weak Electric Fields
Description
Actions