Strain Induced Tunability of the Electronic Properties of SrTiO3 Interfaces

20 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

SrTiO 3 (STO) films are widely used as substrates in oxide devices. Although STO is one of the most studied materials, both experimentally and computationally, the effect of strain at the interface is almost completely ignored. In this work, we perform Density Functional Theory (DFT) calculations using the SCAN meta-GGA exchange-correlation functional to study the effect of uniaxial- and biaxial-strain on structural and electronic properties of STO interfaces. We find that under tensile uniaxial-strain, the band gap increases significantly, as a consequence of a large tilting in the octahedra. On the other side, under compression, the band gap is almost constant. Similar effects are seen for tensile biaxial strain, while for compressive strain, the gap first increases and then decreases, due to the temporary appearance of a polar distortion. In addition, we observe an orbital inversion at the conduction-band edge under different uni/bi-axial-strain conditions. This work provides a new perspective of the use of strain to modulate the structural and electronic properties of perovskite film materials for multiple applications.

Keywords

SrTiO3
Density Functional Theory
Strain
Interfaces

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.