Tandem Deoxygenative Hydrosilation of Carbon Dioxide with a Cationic Scandium Hydridoborate and B(C6F5)3

15 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A scandium hydridoborate complex supported by the dianionic pentadentate ligand B2Pz4Py is prepared via hydride abstraction from the previously reported scandium hydride complex with tris-pentafluorophenyl borane. Exposure of [(B2Pz4Py)Sc][HB(C6F5)3] to CO2 immediately forms [(B2Pz4Py)Sc][HCOOB(C6F5)3] at room temperature. The formatoborate complex can also be synthesized directly from the starting material (B2Pz4Py)ScCl with Et3SiH and B(C6F5)3 while in the presence of an atmosphere of CO2 in 81% yield. This compound was evaluated as the transition metal component of a tandem deoxgenative CO2 hydrosilation catalyst. At 5% loadings, complete consumption of Et3SiH was observed along with CO2 reduction products, but conversion to an inactive scandium complex identified as (B2Pz4Py)ScOSiEt3 was observed


tandem catalysis
carbon dioxide


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.