Total Synthesis of Axially-Chiral Cannabinols: A New Platform for Cannabinoid-Based Drug Discovery

13 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Phytocannabinoids, molecules isolated from cannabis, are gaining attention as promising leads in modern medicine, including pain management. Considering the urgent need for combating the opioid crisis, new directions for the design of cannabinoid-inspired analgesics are of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural (and unknown) isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are multiple reasons for thinking this: (a) ax-CBNs would have ground-state three-dimensionality akin to THC, a key bioactive component of cannabis, (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability, and (c) atropisomerism with respect to phytocannabinoids is unexplored “chemical space.” Herein we report a scalable total synthesis of ax-CBNs, examine physical properties experimentally and computationally, and provide preliminary behavioral and analgesic analysis of the novel scaffolds.


atropisomeric biaryl products
Total Synthesis

Supplementary materials


Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.