A Molecular Computing Approach to Solving Optimization Problems via Programmable Microdroplet Arrays

12 November 2019, Version 1

Abstract

The search for novel forms of computing that show advantages as alternatives to the dominant von-Neuman model-based computing is important as it will enable different classes of problems to be solved. By using droplets and room-temperature processes, molecular computing is a promising research direction with potential biocompatibility and cost advantages. In this work, we present a new approach for computation using a network of chemical reactions taking place within an array of spatially localized droplets whose contents represent bits of information. Combinatorial optimization problems are mapped to an Ising Hamiltonian and encoded in the form of intra- and inter- droplet interactions. The problem is solved by initiating the chemical reactions within the droplets and allowing the system to reach a steady-state; in effect, we are annealing the effective spin system to its ground state. We propose two implementations of the idea, which we ordered in terms of increasing complexity. First, we introduce a hybrid classical-molecular computer where droplet properties are measured and fed into a classical computer. Based on the given optimization problem, the classical computer then directs further reactions via optical or electrochemical inputs. A simulated model of the hybrid classical-molecular computer is used to solve boolean satisfiability and a lattice protein model. Second, we propose architectures for purely molecular computers that rely on pre-programmed nearest-neighbour inter-droplet communication via energy or mass transfer.

Keywords

molecular computing
hybrid classical-molecular computer
Ising model
Boolean satisfiability

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.