A GPU-Accelerated Machine Learning Framework for Molecular Simulation: HOOMD-blue with TensorFlow

16 October 2019, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

As interest grows in applying machine learning force-fields and methods to molecular simulation, there is a need for state-of-the-art inference methods to use trained models within efficient molecular simulation engines. We have designed and implemented software that enables integration of a scalable GPU-accelerated molecular mechanics engine, HOOMD-blue, with the machine learning (ML) TensorFlow package. TensorFlow is a GPU-accelerated, scalable, graph-based tensor computation model building package that has been the implementation of many recent innovations in deep learning and other ML tasks. TensorFlow models are constructed in Python and can be visualized or debugged using the rich set of tools implemented in the TensorFlow package. In this article, we present four major examples of tasks this software can accomplish which would normally require multiple different tools: (1) we train a neural network to reproduce a force field of a Lennard-Jones simulation; (2) we perform online force matching of methanol; (3) we compute the maximum entropy bias of a Lennard-Jones collective variable; (4) we calculate the scattering profile of an ongoing TIP4P water molecular dynamics simulation. This work should accelerate both the design of new neural network based models in computational chemistry research and reproducible model specification by leveraging a widely-used ML package.

Keywords

Molecular Dynamics
Machine Learning
Tensorflow
GPU Accelerated
Coarse Graining
Collective Variables

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.