High-Performance Iron-Based ORR Catalysts Synthesized via Chemical Vapor Deposition

31 October 2019, Version 1


A Fe-N-C catalyst was synthesized via chemical vapor deposition (CVD) of gas phase FeCl3 onto a metal organic framework (MOF)-derived N-doped carbon (N-C) substrate at 750 ℃. This catalyst exhibits an unprecedented current density of 0.033 mA·cm-2 at 0.90 ViR-free (IR-corrected) and 0.044 mA·cm-2 at 0.89 ViR-free in a H2-O2 proton exchange membrane fuel cell under 1.0 bar and 80 ℃ conditions. The exceptional ORR activity of this catalyst is attributed to the ultra-high density of the Fe(II)-N4 sites. The high density of Fe(II)-N4 sites is realized by CVD that allows for the ready formation of Fe(II)-N4 sites via direct incorporation of gas phase FeCl3 into microporous N-C defects at relatively low temperatures. At these low temperatures, the doped N and Fe(II)-N4 are better preserved as compared to those in previous Fe-N-C catalysts synthesized via pyrolysis of the mixture of Fe, N, and C precursors at 1000 ± 100 ℃.


PGM-free catalyst
fuel cell
Fe-N-C catalysts


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.