Simulation of Light Propagation in Photochemical Fixed-Bed Reactors Using a BRDF-Based Model

30 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Modelling light transport in fixed-bed photochemical reactors can be challenging if the geometry of the packing is the object of investigation. In this manuscript, we present a physically-based model of light transport for the simulation of fixed-bed photochemical reactors to be coupled with explicit consideration of reactor geometry: spatial properties of the fixed bed, such as size, shape, distribution and quality of the surface of packing particles are used as input variables. The existence of a catalytic coating on the packing surface, and its major properties such as spectral coefficient of absorption and surface rugosity can also be easily coupled with the light propagation algorithm. The model was built upon the framework of the bidirectional reflectance distribution function (BRDF), using the microfacets theory (MFT) to evaluate an approximate solution. As an example of application, easily measurable experimental data, such as UV absorption/extinction spectra and surface roughness, and readily available literature data on spectral refractive indices are used as inputs to calculate (i) the fate of the irradiated energy (percentage absorbed, transmitted and scattered-out) and (ii) the spatial distribution of the scattered rays. Taken together, these output data should offer the engineer guidelines for the design of fixed-bed photochemical reactors with optimised light collection and distribution.


Keywords

BRDF
photochemical reactor
photocatalysis
Mathematical modelling
light propagation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.