Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor

29 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Light driven molecular motors possess immense potential as central driving units for future nanotechnology. Integration into larger molecular setups and transduction of their mechanical motions represents the current frontier of research. Here we report on an integrated molecular machine setup allowing to transmit potential energy from a motor unit unto a remote receiving entity. The setup consists of a motor unit connected covalently to a distant and sterically strongly encumbered biaryl receiver. By action of the motor unit single bond rotation of the receiver is strongly accelerated and forced to proceed unidirectionally. The transmitted potential energy is directly measured as the extent to which energy degeneration is lifted in the thermal atropisomerization of this biaryl. Energy degeneracy is reduced by as much as 2.3 kcal/mol and rate accelerations up to 2x105 fold in terms of rate constants are achieved.


Molecular Motors
Molecular Machines
Physical Organic Chemistry

Supplementary materials

Uhl Dube SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.