Robot-Accelerated Perovskite Investigation and Discovery (RAPID): 1. Inverse Temperature Crystallization

24 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Metal halide perovskites are a promising class of materials for next-generation photovoltaic and optoelectronic devices. The discovery and full characterization of new perovskite-derived materials are limited by the difficulty of growing high quality crystals needed for single-crystal X-ray diffraction studies. We present the first automated, high-throughput approach for metal halide perovskite single crystal discovery based on inverse temperature crystallization (ITC) as a means to rapidly identify and optimize synthesis conditions for the formation of high quality single crystals. Using this automated approach, a total of 1928 metal halide perovskite synthesis reactions were conducted using six organic ammonium cations (methylammonium, ethylammonium, n-butylammonium, formamidinium, guanidinium, and acetamidinium), increasing the number of metal halide perovskite materials accessible by ITC syntheses by three and resulting in the formation of a new phase, [C2H7N2][PbI3]. This comprehensive dataset allows for a statistical quantification of the total experimental space and of the likelihood of large single crystal formation. Moreover, this dataset enables the construction and evaluation of machine learning models for predicting crystal formation conditions. This work is a proof-of-concept that combining high throughput experimentation and machine learning accelerates and enhances the study of metal halide perovskite crystallization. This approach is designed to be generalizable to different synthetic routes for the acceleration of materials discovery.


metal halide perovskites
machine learning
inverse temperature crystallization


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.